试题
题目:
(2010·江西)如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为
(6,0)
(6,0)
.
答案
(6,0)
解:过点P作PM⊥AB于M,则M的坐标是(4,0).
又∵A的坐标为(2,0),
∴OA=2,AM=OM-OA=2,
∵A,B两点一定关于PM对称.
∴MB=AM=2,
∴OB=OM+MB=4+2=6,
则点B的坐标是(6,0).
考点梳理
考点
分析
点评
专题
垂径定理;坐标与图形性质;勾股定理.
过点P作PM⊥AB于M,则A,B两点一定关于PM对称.即可求解.
本题主要考查了圆的轴对称性,经过圆心的直线就是圆的对称轴.
压轴题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )