试题
题目:
(2011·西宁)如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为
5cm
5cm
.
答案
5cm
解:连接OA,
∵OD⊥AB,OE⊥AC,
∴AE=
1
2
AC=
1
2
×6=3(cm),AD=
1
2
AB=
1
2
×8=4(cm),∠OEA=∠ODA=90°,
∵AB、AC是互相垂直的两条弦,
∴∠A=90°,
∴四边形OEAD是矩形,
∴OD=AE=3cm,
在Rt△OAD中,OA=
AD
2
+
OD
2
=5cm.
故答案为:5cm.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
首先由AB、AC是互相垂直的两条弦,OD⊥AB,OE⊥AC,易证得四边形OEAD是矩形,根据垂径定理,可求得AE与AD的长,然后利用勾股定理即可求得⊙O的半径OA长.
此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.
压轴题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )