试题
题目:
(2012·遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为
4
4
.
答案
4
解:∵OC⊥AP,OD⊥PB,
∴由垂径定理得:AC=PC,PD=BD,
∴CD是△APB的中位线,
∴CD=
1
2
AB=
1
2
×8=4,
故答案为:4.
考点梳理
考点
分析
点评
专题
垂径定理;三角形中位线定理.
根据垂径定理得出AC=PC,PD=BD,根据三角形的中位线推出CD=
1
2
AB,代入求出即可.
本题考查了三角形的中位线和垂径定理的应用,主要考查学生的推理能力,题目比较典型,难度适中.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )