试题
题目:
已知⊙O的半径为r,AB、CD为⊙O的两条直径,且弧AC=60°,P为弧BC上的任意一点,PA、PD分别交CD、AB于E、F,则AE·AP+DF·DP等于( )
A.3r
2
B.
2
3
r
2
C.4r
2
D.
3
2
r
2
答案
A
解:如图:
∵
AC
=60°,CD为直径,
∴
AD
=120°,∴∠C=60°=∠P.
在△ACE和△D0F中,
AC=OC=DO
∠C=∠DOF=60°
∠CAE=∠ODF
∴△ACE≌△DOF
∴CE=OF.
又∵△AOE∽△APF,△DOF∽△DPE
∴AE·AP=AO·AF,DF·DP=DO·DE.
∴AE·AP+DF·DP
=AO·AF+DO·DE
=r(r+OF)+r(r+OE)
=r(2r+OE+OF)
=r(2r+OE+CE)
=r(2r+r)
=3r
2
.
故选A.
考点梳理
考点
分析
点评
专题
垂径定理;全等三角形的判定与性质.
由AB,CD是直径,弧AC为60°,可以证明△ACE和△DOF全等,得到对应边相等.由两组三角形相似,对应线段成比例,得到线段乘积的形式,然后结合图形进行计算.
本题考查的是垂径定理,根据直径和弧的度数,得到两三角形全等,对应边相等.由三角形相似,对应线段成比例,得到线段乘积的形式,结合图形计算求值.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )