试题
题目:
弓形弦长为24,弓形高为8,则弓形所在圆的直径是( )
A.10
B.26
C.13
D.5
答案
B
解:如图,
弦AB=24,
过O点作OD⊥AB,D为垂足,交⊙O于C点,则DA=DB,弧AC=弧BC,则CD为弓形高,即CD=8;
连OA,
∵AB=24,
∴DA=12,
在Rt△OAD中,设半径为r,
∴r
2
=12
2
+(r-8)
2
,
解得r=13,
所以圆的直径是26.
故选B.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
如图,弦AB=24,过O点作OD⊥AB,D为垂足,交⊙O于C点,则DA=DB=12,弧AC=弧BC,则CD为弓形高,即CD=8;然后在Rt△OAD中,设半径为r,利用勾股定理即可得到半径r,也就得到圆的直径.
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理和弓形高等概念.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )