试题
题目:
如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形AEOD是正方形.
答案
证明:∵OD⊥AB,
∴AD=BD=
1
2
AB.
同理AE=CE=
1
2
AC.
∵AB=AC,∴AD=AE.
∵OD⊥AB OE⊥AC AB⊥AC,
∴∠OEA=∠A=∠ODA=90°,
∴四边形ADOE为矩形.
又∵AD=AE,
∴矩形ADOE为正方形.
证明:∵OD⊥AB,
∴AD=BD=
1
2
AB.
同理AE=CE=
1
2
AC.
∵AB=AC,∴AD=AE.
∵OD⊥AB OE⊥AC AB⊥AC,
∴∠OEA=∠A=∠ODA=90°,
∴四边形ADOE为矩形.
又∵AD=AE,
∴矩形ADOE为正方形.
考点梳理
考点
分析
点评
专题
垂径定理;正方形的判定.
先根据已知条件判定四边形AEOD为矩形,再利用垂径定理证明邻边相等即可证明四边形AEOD为正方形.
本题考查了正方形的判定方法:邻边相等的矩形为正方形和垂径定理的运用.
证明题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )