试题

题目:
青果学院如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为
AN
的中点,P是直径MN上一动点,则PA+PB的最小值为(  )



答案
A
青果学院解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.
此时PA+PB最小,且等于AC的长.
连接OA,OC,
∵∠AMN=30°,
∴∠AON=60°,
AN
的度数是60°,
BN
的度数是30°,
根据垂径定理得
CN
的度数是30°,
则∠AOC=90°,
∵OA=OC=2,
∴AC=
22+22
=2
2

故选:A.
考点梳理
轴对称-最短路线问题;勾股定理;垂径定理.
先作点B关于MN的对称点C,连接AC交MN于点P,连接OA,OC,再求出∠AOC=90°,最后根据勾股定理和OA=OC=2,列式计算即可.
此题主要考查了轴对称-最短路线问题,用到的知识点是垂径定理、勾股定理、圆周角、圆心角之间的关系,关键是作出AC最短时点P所在的位置.
找相似题