试题
题目:
如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=( )
A.4
B.5
C.6
D.7
答案
C
解:∵OM⊥AB,ON⊥AC,
∴AN=CN,AM=BM,
即M为AB的中点,N为AC的中点,
∴MN为△ABC的中位线,
∴MN=
1
2
BC,
∴BC=2MN=6.
故选C.
考点梳理
考点
分析
点评
专题
垂径定理;三角形中位线定理.
由于OM⊥AB,ON⊥AC,根据垂径定理得到AN=CN,AM=BM,则MN为△ABC的中位线,然后根据三角形中位线的性质求解.
本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形中位线性质.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )