试题
题目:
如图,已知⊙O,线段AB与⊙O交于C、D两点,且OA=OB,
求证:AC=BD.
答案
证明:过点O作OE⊥AB于点E,
∵CD是⊙O的弦,
∴CE=DE,
∵OA=OB,
∴AE=BE,
∴AE-CE=BE-DE,即AC=BD.
证明:过点O作OE⊥AB于点E,
∵CD是⊙O的弦,
∴CE=DE,
∵OA=OB,
∴AE=BE,
∴AE-CE=BE-DE,即AC=BD.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
过点O作OE⊥AB于点E,由垂径定理可知CE=DE,再由OA=OB,OE⊥AB可知AE=BE,故可得出结论.
本题考查的是垂径定理,即平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
证明题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )