试题
题目:
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.
答案
解:连接OD,如图所示:
∵弦CD⊥AB,AB为圆O的直径,
∴E为CD的中点,又CD=16,
∴CE=DE=
1
2
CD=8,又OD=
1
2
AB=10,
∵CD⊥AB,∴∠OED=90°,
在Rt△ODE中,DE=8,OD=10,
根据勾股定理得:OE
2
+DE
2
=OD
2
,
∴OE=
OD
2
-
DE
2
=6,
则OE的长度为6.
解:连接OD,如图所示:
∵弦CD⊥AB,AB为圆O的直径,
∴E为CD的中点,又CD=16,
∴CE=DE=
1
2
CD=8,又OD=
1
2
AB=10,
∵CD⊥AB,∴∠OED=90°,
在Rt△ODE中,DE=8,OD=10,
根据勾股定理得:OE
2
+DE
2
=OD
2
,
∴OE=
OD
2
-
DE
2
=6,
则OE的长度为6.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.
此题考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.
方程思想.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )