试题
题目:
如图,在⊙O中,CD是直径,AB是弦,且CD⊥AB,已知CD=10,CM=2,求AB.
答案
解:连结OA,如图,
∵CD⊥AB,
∴AM=BM,
∵直径CD=10,
∴OC=OA=5,
∴OM=OC-CM=5-2=3,
在Rt△OAM中,AM=
O
A
2
-O
M
2
=4,
∴AB=2AM=8.
解:连结OA,如图,
∵CD⊥AB,
∴AM=BM,
∵直径CD=10,
∴OC=OA=5,
∴OM=OC-CM=5-2=3,
在Rt△OAM中,AM=
O
A
2
-O
M
2
=4,
∴AB=2AM=8.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
连结OA,先根据垂径定理由CD⊥AB得到AM=BM,再计算出OM,然后利用勾股定理计算出AM,再根据AB=2AM进行计算.
本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )