试题
题目:
已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF.
求证:OE=OF.
答案
证明:连接OA,OB,
∵OA=OB,
∴∠A=∠B.
又∵AE=BF,
∴△OAE≌△OBF.
∴OE=OF.
证明:连接OA,OB,
∵OA=OB,
∴∠A=∠B.
又∵AE=BF,
∴△OAE≌△OBF.
∴OE=OF.
考点梳理
考点
分析
点评
垂径定理;等腰三角形的判定与性质.
连接OA,OB,可以利用SAS判定△OAE≌△OBF,根据全等三角形的对应边相等,可得到OE=OF.
本题主要考查了圆的性质,垂径定理,全等三角形的判定等知识的综合应用及推理论证能力.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )