试题
题目:
如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=2,BC=8.则⊙O的半径为( )
A.
5
B.5
C.
2
5
D.6
答案
C
解:延长AO交BC于点D,连接OB,由对称性及等腰Rt△ABC,得到AD⊥BC,
∴D为BC的中点,即BD=CD=
1
2
BC=4,AD=
1
2
BC=4,
∵OA=2,∴OD=AD-OA=4-2=2,
在Rt△BOD中,根据勾股定理得:OB=
O
D
2
+B
D
2
=2
5
,
则圆的半径为2
5
.
故选C
考点梳理
考点
分析
点评
专题
垂径定理;等腰三角形的性质;勾股定理.
延长AO于BC交于点D,连接OB,由对称性及三角形ABC为等腰直角三角形,得到AD与BC垂直,根据三线合一得到D为BC的中点,利用直角三角形斜边的中线等于斜边的一半得到AD为BC的一半,求出AD的长,由AD-OA求出OD的长,再利用垂径定理得到D为BC的中点,求出BD的长,在直角三角形BOD中,利用勾股定理求出OB的长,即为圆的半径.
此题考查了垂径定理,勾股定理,以及等腰三角形的性质,熟练掌握垂径定理是解本题的关键.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )