试题
题目:
如图所示,AB是⊙O的一条弦(不是直径),点C,D是直线AB上的两点,且AC=BD.
(1)判断△OCD的形状,并说明理由.
(2)当图中的点C与点D在线段AB上时(即C,D在A,B两点之间),(1)题的结论还存在吗?
答案
解:(1)△OCD是等腰三角形
如左图所示,过点O作OM⊥AB,垂足为M,则有MA=MB
又AC=BD
∴AC+MA=BD+MB
即CM=DM
又OM⊥CD,即OM是CD的垂直平分线
∴OC=OD
∴△OCD为等腰三角形
(2)当点C,D在线段AB上时,如右图所示
同(1)题作OM⊥AB,垂足为M
由垂径定理,得AM=BM
又AC=BD
∴CM=AM-AC=BM-BD=MD
∴OC=OD
∴△OCD为等腰三角形.
解:(1)△OCD是等腰三角形
如左图所示,过点O作OM⊥AB,垂足为M,则有MA=MB
又AC=BD
∴AC+MA=BD+MB
即CM=DM
又OM⊥CD,即OM是CD的垂直平分线
∴OC=OD
∴△OCD为等腰三角形
(2)当点C,D在线段AB上时,如右图所示
同(1)题作OM⊥AB,垂足为M
由垂径定理,得AM=BM
又AC=BD
∴CM=AM-AC=BM-BD=MD
∴OC=OD
∴△OCD为等腰三角形.
考点梳理
考点
分析
点评
垂径定理;等腰三角形的判定.
(1)过点O作OM⊥AB,根据垂径定理得出MA=MB,又因为AC=BD,可推理出CM=DM,根据垂直平分线上的点到线段两端的距离相等即可得出结论.
(2)解法和(1)相似.
此题通过两问,引导同学们进行探索,得出相同结论,开阔了同学们的视野,体会数学的奥妙.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )