试题

题目:
青果学院如图,AB,CD是⊙O的两条弦,AB=CD,OE⊥AB于E,OF⊥CD于F,求证:OE=OF.
答案
证明:∵OE⊥AB于E,OF⊥CD于F,
∴OE和OF是圆的两条弦的弦心距,
∵AB,CD是⊙O的两条弦,AB=CD,
∴OE=OF.
证明:∵OE⊥AB于E,OF⊥CD于F,
∴OE和OF是圆的两条弦的弦心距,
∵AB,CD是⊙O的两条弦,AB=CD,
∴OE=OF.
考点梳理
垂径定理;勾股定理.
利用同圆或等圆中相等的弦所对的弧、弦心距相等证明即可.
本题考查了垂径定理及勾股定理的知识,解题的关键是正确的将证明弦心距转化为证明两弦相等.
找相似题