试题

题目:
青果学院如图,点A、B、C是⊙O上的三点,AB∥OC.
(1)求证:AC平分∠OAB;
(2)过点O作OE⊥AB于点E,交AC于点P.
①若AB=2,∠AOE=30°,求PE的长;
②若AB=10,OA=13,请直接写出OP的长.
答案
(1)证明:∵AB∥OC,
∴∠C=∠BAC;
∵OA=OC,
∴∠C=∠OAC,
∴∠BAC=∠OAC,
即AC平分∠OAB;

(2)解:①∵OE⊥AB,AB=2,
AE=BE=
1
2
AB=1

又∵∠AOE=30°,∠OEA=90°,
∴OE=
3
AE=
3

∵AB∥OC.
PE
OP
=
OC
AE
,即
PE
OP
=
1
2

PE
OE
=
1
3

∴PE=
1
3
OE=
3
3

②∵AB=10,
∴AE=5,
在Rt△OAE中,OA=13,OE=
132-52
=12,
∵AB∥OC.
OP
PE
=
OC
AE

OP
OE
=
13
13+5

∴OP=
13
18
×12=
26
3

(1)证明:∵AB∥OC,
∴∠C=∠BAC;
∵OA=OC,
∴∠C=∠OAC,
∴∠BAC=∠OAC,
即AC平分∠OAB;

(2)解:①∵OE⊥AB,AB=2,
AE=BE=
1
2
AB=1

又∵∠AOE=30°,∠OEA=90°,
∴OE=
3
AE=
3

∵AB∥OC.
PE
OP
=
OC
AE
,即
PE
OP
=
1
2

PE
OE
=
1
3

∴PE=
1
3
OE=
3
3

②∵AB=10,
∴AE=5,
在Rt△OAE中,OA=13,OE=
132-52
=12,
∵AB∥OC.
OP
PE
=
OC
AE

OP
OE
=
13
13+5

∴OP=
13
18
×12=
26
3
考点梳理
垂径定理;平行线的性质;勾股定理.
(1)由AB∥OC,得∠C=∠BAC,而∠C=∠OAC,得到∠BAC=∠OAC;
(2)①由OE⊥AB,AB=2,得AE=
1
2
AB=1,再由∠AOE=30°,∠OEA=90°,得到OE=
3
AE=
3
,然后根据AB∥OC,得到
PE
OP
=
OC
AE
,即
PE
OP
=
1
2
,利用比例的性质即可得到PE.
②和①的方法一样,先根据垂径定理得到AE=5,根据勾股定理得OE=
132-52
=12,再利用AB∥OC,得到
OP
PE
=
OC
AE
,利用比例的性质即可得到OP.
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理、平行线的性质、三角形相似的性质以及比例的性质.
计算题.
找相似题