试题
题目:
如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=8,DF=4,则菱形ABCD的边长为( )
A.8
5
B.8
2
C.8
3
D.8
答案
D
解:如图,连接OM,
根据菱形的对角线互相垂直平分,得OD=4,即圆的半径是8,
在直角△AOM中,OM=8,AM=4
根据勾股定理,得OA=4
3
,
在直角△AOD中,根据勾股定理得到:AD=
48+16
=8
即菱形的边长是8.
故选D.
考点梳理
考点
分析
点评
垂径定理;菱形的性质;矩形的性质.
根据菱形的性质和勾股定理求解.
综合运用了菱形的性质以及勾股定理.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )