试题

题目:
青果学院已知在⊙O中,弦AB的长为16cm,圆心为O,OE⊥AB于E点,交⊙O 于点F,OE=6cm,求EF的长.
答案
青果学院解:连接OA,
∵OE⊥AB,AB=16cm,
∴AE=
1
2
AB=8(cm),
∵OE=6cm,
在Rt△OAE中,OA=
OE2+AE2
=10(cm),
∴EF=OF-OE=4(cm).
青果学院解:连接OA,
∵OE⊥AB,AB=16cm,
∴AE=
1
2
AB=8(cm),
∵OE=6cm,
在Rt△OAE中,OA=
OE2+AE2
=10(cm),
∴EF=OF-OE=4(cm).
考点梳理
垂径定理;勾股定理.
首先连接OA,由在⊙O中,弦AB的长为16cm,OE⊥AB,即可求得AE的长,然后由勾股定理求得OA的长,继而求得EF的长.
此题考查了垂径定理与勾股定理.此题比较简单,注意掌握数形结合思想的应用.
找相似题