试题
题目:
(2007·西藏)如图,⊙O的半径长为10cm,弦AB=16cm,则圆心O到弦AB的距离为( )
A.4cm
B.5cm
C.6cm
D.7cm
答案
C
解:连接OB,过点O作OC⊥AB于C;
∵OC⊥AB,AB=16cm
∴BC=8cm
在Rt△OBC中
OB=10cm,CB=8cm
OC=
100-64
=
36
=6cm
故选C.
考点梳理
考点
分析
点评
垂径定理.
连接OB,过点O作OC⊥AB于C,构造Rt△OBC,利用垂径定理可求得弦的一半是8,利用勾股定理即可求得弦心距.
本题主要考查了利用垂径定理,通过构造直角三角形求弦心距.圆中涉及弦长、半径、弦心距的计算的问题,常把半弦长,半径,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形相关性质求解.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )