试题
题目:
(2009·咸宁)如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M,N两点,若点M的坐标是(-4,-2),则点N的坐标为( )
A.(-1,-2)
B.(1,-2)
C.(-1.5,2)
D.(1.5,-2)
答案
A
解:过点A作AB⊥MN,连接AN
设⊙A的半径为r,
则AN=r,AB=2,BN=MF-BF=4-r,
则在Rt△ABN中,根据勾股定理,可得:r=2.5,
∴BN=4-2.5=1.5,
∴N到y轴的距离为:2.5-1.5=1,
又点N在第三象限,
∴N的坐标为(-1,-2).
故选A.
考点梳理
考点
分析
点评
专题
坐标与图形性质;勾股定理;垂径定理.
本题可先设半径的大小,根据点A的坐标列出方程.连接AN根据等腰三角形的性质即可得出AN的长度,再根据两点之间的距离公式即可解出N点的坐标.
解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.
压轴题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )