试题
题目:
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )
A.5cm
B.6cm
C.8cm
D.10cm
答案
B
解:当OP为垂线段时,即OP⊥AB,OP的最短,如图,
∴AP=BP=
1
2
AB=
1
2
×16=8,
而OA=10,
在Rt△OAP中,
OP=
OA
2
-
AP
2
=
10
2
-
8
2
=6(cm).
故选B.
考点梳理
考点
分析
点评
专题
垂径定理;垂线段最短;勾股定理.
根据直线外一点到直线上任一点的线段长中垂线段最短得到当OP为垂线段时,即OP⊥AB,OP的最短,再根据垂径定理得到AP=BP=
1
2
AB=
1
2
×16=8,然后根据勾股定理计算出OP即可.
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧;也考查了垂线段最短以及勾股定理.
计算题.
找相似题
(2013·丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )
(2012·黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )
(2012·鄂尔多斯)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )