试题

题目:
解下列方程
(1)3x2-2x=4x2-3x-6                 (2)x2-x-
5
x+
5
=0.
答案
解:(1)整理得x2-x-6=0,
(x+2)(x-3)=0,
x+2=0或x-3=0,
x1=-2,x2=3;
(2)整理得x2-(1+
5
)x+
5
=0,
(x-1)(x-
5
)=0,
x-1=0或x-
5
=0,
即x1=1或x2=
5

解:(1)整理得x2-x-6=0,
(x+2)(x-3)=0,
x+2=0或x-3=0,
x1=-2,x2=3;
(2)整理得x2-(1+
5
)x+
5
=0,
(x-1)(x-
5
)=0,
x-1=0或x-
5
=0,
即x1=1或x2=
5
考点梳理
解一元二次方程-因式分解法.
(1)先整理得x2-x-6=0,再进行因式分解即可;
(2)先整理得x2-(1+
5
)x+
5
=0,再进行因式分解即可.
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
计算题.
找相似题