试题

题目:
解方程:
(1)x2-6x+9=(5-2x)2
(2)3x2-2=6x
(3)3x2-6x+4=0.
答案
解:(1)x2-6x+9=(5-2x)2
(x-3)2-(5-2x)2=0,
(x-3+5-2x)(x-3-5+2x)=0,
(-x+2)(3x-8)=0,
解得:x1=2,x2=
8
3


(2)3x2-2=6x,
∴3x2-6x-2=0,
△=b2-4ac=36+24=60>0,
∴x=
-b±
2a
=
60
2×3

x1=
3+
15
3
x2=
3-
15
3


(3)3x2-6x+4=0.
∵△=b2-4ac=36-48=-12<0,
∴此方程没有实数根.
解:(1)x2-6x+9=(5-2x)2
(x-3)2-(5-2x)2=0,
(x-3+5-2x)(x-3-5+2x)=0,
(-x+2)(3x-8)=0,
解得:x1=2,x2=
8
3


(2)3x2-2=6x,
∴3x2-6x-2=0,
△=b2-4ac=36+24=60>0,
∴x=
-b±
2a
=
60
2×3

x1=
3+
15
3
x2=
3-
15
3


(3)3x2-6x+4=0.
∵△=b2-4ac=36-48=-12<0,
∴此方程没有实数根.
考点梳理
解一元二次方程-因式分解法;解一元二次方程-公式法.
(1)利用平方差公式以及完全平方公式进行因式分解,即可得出方程的根;
(2)利用公式法进行求根,注意判别式的符号;
(3)利用判别式直接得出此方程没有实数根.
此题主要考查了一元二次方程的解法,正确的应用因式分解法以及公式法解方程是解决问题的关键.
找相似题