试题

题目:
解下列方程
(1)x2-6x-7=0
(2)(2x+1)(x-3)=3.
答案
解:(1)x2-6x-7=0,
把方程的左边分解因式得:(x-7)(x+1)=0,
即x-7=0,x+1=0,
解方程得:x1=7,x2=-1.
∴原方程的解是x1=7,x2=-1.

(2)(2x+1)(x-3)=3,
整理得:2x2-5x=6,
配方得:x2-
5
2
x+(
5
4
)
2
=3+(
5
4
)
2

(x-
5
4
)
2
=
73
16

开方得:x-
5
4
=
73
4
,x-
5
4
=-
73
4

解得:x1=
5+
73
4
,x2=
5-
73
4

∴原方程的解是x1=
5+
73
4
,x2=
5-
73
4

解:(1)x2-6x-7=0,
把方程的左边分解因式得:(x-7)(x+1)=0,
即x-7=0,x+1=0,
解方程得:x1=7,x2=-1.
∴原方程的解是x1=7,x2=-1.

(2)(2x+1)(x-3)=3,
整理得:2x2-5x=6,
配方得:x2-
5
2
x+(
5
4
)
2
=3+(
5
4
)
2

(x-
5
4
)
2
=
73
16

开方得:x-
5
4
=
73
4
,x-
5
4
=-
73
4

解得:x1=
5+
73
4
,x2=
5-
73
4

∴原方程的解是x1=
5+
73
4
,x2=
5-
73
4
考点梳理
解一元二次方程-因式分解法;等式的性质;解一元一次方程;解一元二次方程-配方法.
(1)把方程的左边分解因式得到(x-7)(x+1)=0,推出方程x-7=0,x+1=0,求出方程的解即可;
(2)整理后把方程的左边配方得(x-
5
4
)
2
=
73
16
,开方得到两个一元一次方程,求出方程的解即可.
本题主要考查对解一元二次方程-因式分解法、配方法,解一元一次方程,等式的性质等知识点的理解和掌握,能选择适当的方法解一元二次方程是解此题的关键.
计算题.
找相似题