试题

题目:
(1)(x+4)2=5(x+4)
(2)2x2-10x=3.
答案
解:(1)方程变形得:(x+4)2-5(x+4)=0,
分解因式得:(x+4)(x+4-5)=0,
解得:x1=-4,x2=1;

(2)方程整理得:2x2-10x-3=0,
这里a=2,b=-10,c=-3,
∵△=100+24=124,
∴x=
10±2
31
4
=
31
2

解:(1)方程变形得:(x+4)2-5(x+4)=0,
分解因式得:(x+4)(x+4-5)=0,
解得:x1=-4,x2=1;

(2)方程整理得:2x2-10x-3=0,
这里a=2,b=-10,c=-3,
∵△=100+24=124,
∴x=
10±2
31
4
=
31
2
考点梳理
解一元二次方程-因式分解法;解一元二次方程-公式法.
(1)方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;
(2)方程整理为一般形式,找出a,b,c的值,计算出根的判别式大于0,代入求根公式即可求出解.
此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.
计算题.
找相似题