试题

题目:
若三角形三边的长均能使代数式(x-6)(x-3)的值为零,则此三角形的周长是(  )



答案
C
解:令(x-6)(x-3)=0,
可化为:x-6=0或x-3=0,
解得:x1=6,x2=3,
(i)当三角形为等腰三角形时,三边分别为3,3,6时,不能构成三角形,舍去;
三边分别为6,6,3时,三角形的周长为6+6+3=15;
(ii)当三角形为等边三角形时,边长为3或6,此时三角形周长为9或18,
综上,三角形的周长为9或15或18.
故选C
考点梳理
解一元二次方程-因式分解法;三角形三边关系.
令已知的代数式为0列出关于x的方程,求出方程的解得到x的值,然后分两种情况考虑:当三角形为等腰三角形时,6只能为腰长,求出此时周长;当三角形为等边三角形时,边长可以为3或6,分别求出三角形周长,综上,得到所有满足题意的三角形周长.
此题考查了利用因式分解法求一元二次方程的解,以及三角形的三边关系,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
计算题.
找相似题