试题
题目:
方程9(x+1)
2
-4(x-1)
2
=0正确解法是( )
A.直接开方得3(x+1)=2(x-1)
B.化为一般形式13x
2
+5=0
C.分解因式得[3(x+1)+2(x-1)][3(x+1)-2(x-1)]=0
D.直接得x+1=0或x-l=0
答案
C
解:A:直接开平方应得到两个方程:3(x+1)=2(x-1)和3(x+1)=-2(x-1),所以A不正确;
B:化成一般形式应是:5x
2
+26x+5=0;所以B不正确;
C:方程左边满足平方差形式,可以用平方差公式因式分解为:[3(x+1)+2(x-1)][3(x+1)-2(x-1)]=0,所以C正确.
D:两个完全平方的差为0,不能直接得到两个式子分别是0,只有两个完全平方的和是0,才能直接得到两个式子分别是0,所以D不对.
故选C.
考点梳理
考点
分析
点评
专题
解一元二次方程-因式分解法;因式分解-运用公式法.
根据题目的特点,用平方差公式因式分解.
本题考查的是用因式分解法解一元二次方程,根据题目的结构特点,用平方差公式因式分解.
因式分解.
找相似题
(2013·新疆)方程x
2
-5x=0的解是( )
(2013·鄂州)下列计算正确的是( )
(2012·黔西南州)三角形的两边长分别为2和6,第三边是方程x
2
-10x+21=0的解,则第三边的长为( )
(2012·柳州)你认为方程x
2
+2x-3=0的解应该是( )
(2011·黔南州)三角形两边长分别为3和6,第三边是方程x
2
-6x+8=0的解,则这个三角形的周长是( )