试题

题目:
解方程:
(1)2x(x-3)=(x-3);
(2)2x2+x-2=0.
答案
解:(1)方程移项得:2x(x-3)-(x-3)=0,
分解因式得:(2x-1)(x-3)=0,
可得2x-1=0或x-3=0,
解得:x1=3,x2=
1
2


(2)这里a=2,b=1,c=-2,
∵△=1+16=17,
∴x=
-1±
17
4

则x1=
-1-
17
4
,x2=
-1+
17
4

解:(1)方程移项得:2x(x-3)-(x-3)=0,
分解因式得:(2x-1)(x-3)=0,
可得2x-1=0或x-3=0,
解得:x1=3,x2=
1
2


(2)这里a=2,b=1,c=-2,
∵△=1+16=17,
∴x=
-1±
17
4

则x1=
-1-
17
4
,x2=
-1+
17
4
考点梳理
解一元二次方程-因式分解法;解一元二次方程-公式法.
(1)方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;
(2)找出a,b,c的值,计算出根的判别式大于0,代入求根公式即可求出解.
此题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解本题的关键.
计算题.
找相似题