试题
题目:
已知:方程(x-5)(x-10)=0的两个根分别为等腰三角形的两条边,求三角形周长.
答案
解:由x
2
-15x+50=0,解得x
1
=5,x
2
=10.
①当x
1
=5为腰时,因为5+5=10,不符合三角形三边关系,故舍去;
②当x
2
=10为腰时,则周长C=10+10+5=25.
∴三角形的周长为25.
解:由x
2
-15x+50=0,解得x
1
=5,x
2
=10.
①当x
1
=5为腰时,因为5+5=10,不符合三角形三边关系,故舍去;
②当x
2
=10为腰时,则周长C=10+10+5=25.
∴三角形的周长为25.
考点梳理
考点
分析
点评
等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.
先解方程,再根据等腰三角形的边的特点,分两种情况讨论,注意“两边之和大于第三边”这条原则.
本题考查等腰三角形的性质,三角形三边关系及解一元二次方程的综合运用.
找相似题
(2013·新疆)方程x
2
-5x=0的解是( )
(2013·鄂州)下列计算正确的是( )
(2012·黔西南州)三角形的两边长分别为2和6,第三边是方程x
2
-10x+21=0的解,则第三边的长为( )
(2012·柳州)你认为方程x
2
+2x-3=0的解应该是( )
(2011·黔南州)三角形两边长分别为3和6,第三边是方程x
2
-6x+8=0的解,则这个三角形的周长是( )