试题
题目:
(2013·铁岭)如果三角形的两边长分别是方程x
2
-8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( )
A.5.5
B.5
C.4.5
D.4
答案
A
解:解方程x
2
-8x+15=0得:x
1
=3,x
2
=5,
则第三边c的范围是:2<c<8.
则三角形的周长l的范围是:10<l<16,
∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8.
故满足条件的只有A.
故选A.
考点梳理
考点
分析
点评
专题
三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系.
首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l的一半,从而求得中点三角形的周长的范围,从而确定.
本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.
压轴题.
找相似题
(2013·新疆)方程x
2
-5x=0的解是( )
(2013·鄂州)下列计算正确的是( )
(2012·黔西南州)三角形的两边长分别为2和6,第三边是方程x
2
-10x+21=0的解,则第三边的长为( )
(2012·柳州)你认为方程x
2
+2x-3=0的解应该是( )
(2011·黔南州)三角形两边长分别为3和6,第三边是方程x
2
-6x+8=0的解,则这个三角形的周长是( )