试题

题目:
青果学院(2009·襄阳)如图,在平行四边形ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则平行四边形ABCD的周长为(  )



答案
A
解:∵平行四边形ABCD
∴AD∥BC,
∵AE⊥BC于E,
∵AE=EB=EC=a,
∴△AEB是等腰直角三角形,由勾股定理得:AB2=AE2+BE2,即AB=
2
a,BC=BE+CE=2a,
∴平行四边形ABCD的周长=2(AB+BC)=2a(2+
2
),
∵a是一元二次方程x2+2x-3=0的根,解此方程得x=-3或x=1,显然x=-3,不合题意,x=1,
∴x=a=1,
∴平行四边形ABCD的周长=2(AB+BC)=2a(2+
2
)=2(2+
2
)=4+2
2

故选A.
考点梳理
平行四边形的性质;解一元二次方程-因式分解法;勾股定理.
利用已知条件和平行四边形的性质及勾股定理,即可求解.
本题要求我们能根据所给的条件与图形,观察出△BAE的特殊性,综合运用平行四边形的性质,勾股定理求得平行四边形的周长.
压轴题.
找相似题