试题
题目:
在甲村至乙村的公路有一块山地正在开发.现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.
答案
解:如图,过C作CD⊥AB于D,
∵BC=400米,AC=300米,∠ACB=90°,
∴根据勾股定理得AB=500米,
∵
1
2
AB·CD=
1
2
BC·AC,
∴CD=240米.
∵240米<250米,故有危险,
因此AB段公路需要暂时封锁.
解:如图,过C作CD⊥AB于D,
∵BC=400米,AC=300米,∠ACB=90°,
∴根据勾股定理得AB=500米,
∵
1
2
AB·CD=
1
2
BC·AC,
∴CD=240米.
∵240米<250米,故有危险,
因此AB段公路需要暂时封锁.
考点梳理
考点
分析
点评
勾股定理的应用.
如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.
本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.
找相似题
(2013·安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
(2010·重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:①△APD≌△AEB;②点B到直线AE的距离为
2
;③EB⊥ED;④S
△APD
+S
△APB
=1+
6
;⑤S
正方形ABCD
=4+
6
.其中正确结论的序号是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2006·湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )