试题
题目:
(2006·河北)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A·B·C所走的路程为
2
5
2
5
m.
答案
2
5
解:折线分为AB、BC两段,
AB、BC分别看作直角三角形斜边,
由勾股定理得AB=BC=
2
2
+
1
2
=
5
米.
小明沿图中所示的折线从A·B·C所走的路程为
5
+
5
=
2
5
米.
考点梳理
考点
分析
点评
专题
勾股定理的应用;二次根式的加减法.
由图形可以开出AB=BC,要求AB的长,可以看到,AB、BC分别是直角边为1、2的两个直角三角形的斜边,就可以运用勾股定理求出.
命题立意:本题考查勾股定理的应用.
求两点间的距离公式是以勾股定理为基础的,网格中两个格点间的距离当然离不开构造直角三角形,可以看到,AB、BC分别是直角边为1、2的两个直角三角形的斜边,容易计算AB+BC=
2
5
.
网格型.
找相似题
(2013·安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
(2010·重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:①△APD≌△AEB;②点B到直线AE的距离为
2
;③EB⊥ED;④S
△APD
+S
△APB
=1+
6
;⑤S
正方形ABCD
=4+
6
.其中正确结论的序号是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2006·湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )