试题
题目:
课间时,学生小李看见教室里的一根长25分米的旗竿倒在墙角(如图),竿足距墙底端15分米,于是他顺手将旗竿扶正,使旗竿的顶端上升了4分米,那么竿足将移动( )
A.15分米
B.9分米
C.8分米
D.4分米
答案
C
解:一开始梯子顶部距离地面高度为:
25
2
-
15
2
=20分米
当梯子的顶端沿墙上升4分米时:则梯子的顶部距离墙底端:20+4=24分米
梯子的底部距离墙底端:
25
2
-
24
2
=7分米,
则梯的底部将平滑:15-7=8分米.
故选C.
考点梳理
考点
分析
点评
专题
勾股定理的应用.
先利用勾股定理计算出墙高,当梯子的顶端沿墙上升4分米后,也形成一直角三角形,解此三角形可计算梯的底部距墙底端的距离,则可计算梯子的底部平滑的距离.
本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.
几何图形问题.
找相似题
(2013·安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
(2010·重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:①△APD≌△AEB;②点B到直线AE的距离为
2
;③EB⊥ED;④S
△APD
+S
△APB
=1+
6
;⑤S
正方形ABCD
=4+
6
.其中正确结论的序号是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2006·湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )