试题
题目:
如图,有一位同学用一个含30°角的直角三角板估测学校的旗杆AB的高度,他将30°角的直角边水平放在1.3米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D、B的距离为15米,则旗杆AB的高度为( )(
3
≈1.73,结果精确到0.1m)
A.26.0米
B.27.3米
C.8.7米
D.10.0米
答案
D
解:在直角三角形ACE中,∠ACE=30°,EC=BD=15(米),
AE=EC·tan∠ACE=215×tan30°=15×
3
3
≈8.7(米),
因此AB=AE+BE=8.7+1.3=10.0(米).
即旗杆的高度是10.0米.
故选D.
考点梳理
考点
分析
点评
勾股定理的应用;含30度角的直角三角形.
本题的关键是求出AE的高度,已知了BD的长度也就是EC的长度,可根据∠ACE=30°,在直角三角形ACE中,用EC的长和∠ACE的正切函数求出AE的长.然后根据旗杆的高度AB=AE+BE即可得出旗杆的长.
本题主要考查了解直角三角形的应用,要根据所求和已知的条件正确的选用合适的三角形函数进行求解.
找相似题
(2013·安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
(2010·重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:①△APD≌△AEB;②点B到直线AE的距离为
2
;③EB⊥ED;④S
△APD
+S
△APB
=1+
6
;⑤S
正方形ABCD
=4+
6
.其中正确结论的序号是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2006·湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )