试题
题目:
如图,现有一长方体的实心木块,若有一绳子从A出发沿长方体表面到达C′处,若长方体的长AB=4米,宽BC=3米,高BB′=2米,则绳子最短是
41
41
米.
答案
41
解:展开成平面后,连接AC′,则AC′的长就是绳子最短时的长度,
分为三种情况:
如图1,AB=4,BC′=2+3=5,
在Rt△ABC′中,由勾股定理得:AC′=
4
2
+5
2
=
41
;
如图2,AC=4+3=7,CC′=2,
在Rt△ACC′中,由勾股定理得:AC′=
7
2
+2
2
=
53
>
41
,
如图3,同法可求AC′=
45
>
41
即绳子最短时的长度是
41
,
故答案为:
41
.
考点梳理
考点
分析
点评
专题
平面展开-最短路径问题;勾股定理.
连接AC′,求出AC′的长即可,分为三种情况:画出图形,根据勾股定理求出每种情况时AC′的长,再找出最短的即可.
本题考查了平面展开-最短路线问题和勾股定理的应用,本题具有一定的代表性,是一道比较好的题目,注意:要分类讨论啊.
计算题.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )
(2012·平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为( )
(2010·郑州模拟)如图所示,有一根高为2.1m的木柱,它的底面周长为40cm,在准备元旦联欢晚会时,为了营造喜庆的气氛,老师要求小明将一根彩带从底柱向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( )
(2010·宁德模拟)如图,是一个棱长分别为2、3、4的长方体,一只蜘蛛在顶点A处,一只小昆虫在顶点B处,则蜘蛛接近小昆虫时所爬行的最短路线的长是( )