试题
题目:
如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是
4
2
4
2
.
答案
4
2
解:由题意知,底面圆的直径为2,
故底面周长等于2π.
设圆锥的侧面展开后的扇形圆心角为n°,
根据底面周长等于展开后扇形的弧长得,2π=
4πn
180
,
解得n=90°,
所以展开图中圆心角为90°,
根据勾股定理求得到点A的最短的路线长是:
16+16
=
32
=4
2
.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.
圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.
找相似题
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2004·淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )
(2012·平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为( )
(2010·郑州模拟)如图所示,有一根高为2.1m的木柱,它的底面周长为40cm,在准备元旦联欢晚会时,为了营造喜庆的气氛,老师要求小明将一根彩带从底柱向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( )
(2010·宁德模拟)如图,是一个棱长分别为2、3、4的长方体,一只蜘蛛在顶点A处,一只小昆虫在顶点B处,则蜘蛛接近小昆虫时所爬行的最短路线的长是( )