试题

题目:
代数式3-
a2+2a+3
的最大值为
3-
2
3-
2
,这时a的值是
-1
-1

答案
3-
2

-1

解:要使二次根式有意义,
则a2+2a+3≥0成立,
令y=a2+2a+3=(a+1)2+2,
当a=-1时,y有最小值为2,
故代数式3-
a2+2a+3
的最大值为3-
2
,这时a=-1.
考点梳理
二次根式有意义的条件.
要使代数式有意义则a2+2a+3≥0成立,求代数式最大值,则求根号里的代数式有最小值.
本题主要考查二次根式的意义,
a
要有意义,则a≥0.
找相似题