试题

题目:
青果学院(2008·台湾)如图,G是△ABC的重心,直线L过A点与BC平行.若直线CG分别与AB,L交于D,E两点,直线BG与AC交于F点,则△AED的面积:四边形ADGF的面积=(  )



答案
D
解:设三角形ABC的面积是2
∴三角形BCD的面积和三角形BCF的面积都是1
∵BG:GF=CG:GD=2
∴三角形CGF的面积是
1
3

∴四边形ADGF的面积是2-1-
1
3
=
2
3

∵△ADE≌△BDC(ASA)
∴△ADE的面积是1
∴△AED的面积:四边形ADGF的面积=1:
2
3
=3:2.
故选D.
考点梳理
三角形的重心.
根据重心的概念得出D,F分别是三角形的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE≌△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.
此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
找相似题