试题

题目:
阅读材料,回答问题
(1+
1
2
)×(1-
1
3
)=
3
2
×
2
3
=1

(1+
1
2
)×(1+
1
4
)×(1-
1
3
)×(1-
1
5
)
=
3
2
×
5
4
×
2
3
×
4
5
=(
3
2
×
2
3
)×(
5
4
×
4
5
)
=1×1=1.
根据以下信息,请求出下式的结果.(1+
1
2
)×(1+
1
4
)×(1+
1
6
)×…×(1+
1
20
)×(1-
1
3
)×(1-
1
5
)×(1-
1
7
)×…×(1-
1
21
)

答案
解:(1+
1
2
)×(1+
1
4
)×(1+
1
6
)×…×(1+
1
20
)×(1-
1
3
)×(1-
1
5
)×(1-
1
7
)×…×(1-
1
21

=
3
2
×
5
4
×
7
6
×…×
21
20
×
2
3
×
4
5
×
6
7
×…×
20
21

=(
3
2
×
2
3
)×(
5
4
×
4
5
)×(
7
6
×
6
7
)×…×(
21
20
×
20
21

=1×1×1×…×1
=1.
解:(1+
1
2
)×(1+
1
4
)×(1+
1
6
)×…×(1+
1
20
)×(1-
1
3
)×(1-
1
5
)×(1-
1
7
)×…×(1-
1
21

=
3
2
×
5
4
×
7
6
×…×
21
20
×
2
3
×
4
5
×
6
7
×…×
20
21

=(
3
2
×
2
3
)×(
5
4
×
4
5
)×(
7
6
×
6
7
)×…×(
21
20
×
20
21

=1×1×1×…×1
=1.
考点梳理
有理数的乘法.
先计算小括号内的数,再利用乘法交换律和结合律进行计算即可得解.
本题考查了有理数的乘法,读懂题目信息,利用乘法交换律和结合律进行计算是解题的关键.
规律型.
找相似题