试题
题目:
如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.
答案
证明:(1)∵BD平分∠ABC,
∴∠FBE=∠CBE.
∵CE⊥BD,
∴∠BEF=∠BEC=90°,
又∵BE=BE,
∴△BEF≌△BEC,
∴BF=BC,即△BCF等腰三角形.
(2)∵BF=BC,CE⊥BD,
∴CF=2CE=2EF,
∵∠ABD+∠ADB=90°,∠ABD+∠AFE=90°,
∴∠ADB=∠BFE,
又∵AB=AC,∠BAD=∠CAF=90°,
∴△ABD≌△ACF,
∴BD=CF=2CE.
证明:(1)∵BD平分∠ABC,
∴∠FBE=∠CBE.
∵CE⊥BD,
∴∠BEF=∠BEC=90°,
又∵BE=BE,
∴△BEF≌△BEC,
∴BF=BC,即△BCF等腰三角形.
(2)∵BF=BC,CE⊥BD,
∴CF=2CE=2EF,
∵∠ABD+∠ADB=90°,∠ABD+∠AFE=90°,
∴∠ADB=∠BFE,
又∵AB=AC,∠BAD=∠CAF=90°,
∴△ABD≌△ACF,
∴BD=CF=2CE.
考点梳理
考点
分析
点评
专题
等腰三角形的判定;全等三角形的判定与性质.
根据已知利用AAS判定△BEF≌△BEC,从而得到BF=BC,即△BCF等腰三角形;
由已知可得CF=2CE=2EF,利用AAS判定△ABD≌△ACF,从而得到BD=CF=2CE.
此题主要考查了等腰三角形的判定及全等三角形的判定;三角形全等的证明是正确解答本题的关键.
证明题.
找相似题
(2013·龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
(2010·荆门)如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
在等边三角形所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有( )