试题
题目:
在等边三角形所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有( )
A.1个
B.7个
C.10个
D.无数个
答案
C
解:作三边的中垂线,交点P肯定是其中之一,以B为圆心,BA为半径画圆,交AC的中垂线于P
1
、P
2
两点,作△P
2
AB、△P
2
BC、△P
2
AC,它们也都是等腰三角形,因此P
1
、P
2
是具有题目所说的性质的点;
以A为圆心,BA为半径画圆,交AC的中垂线于点P
3
、P
3
也必具有题目所说的性质.
依此类推,在△ABC的其余两条中垂线上也存在这样性质的点,所以这些点一共有:
3×3+1=10个.
故选C.
考点梳理
考点
分析
点评
等腰三角形的判定.
过B点作△ABC的中垂线,可知在三角形内有一点P满足△PBC、△PAC、△PAB都是等腰三角形,根据等腰三角形的性质可以做两个圆,圆B和圆A,从而可以得出一条中垂线上有四个点满足△PBC、△PAC、△PAB都是等腰三角形,而三角形内部的一点是重合的,所以可以得出共有10个点.
本题考查了等腰三角形的性质以及同学们对图形的整体理解,三角形中任意两条边相等就是等腰三角形.
找相似题
(2013·龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
(2010·荆门)如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
如图,在△ABC中,∠ABC=45°,AD,CF都是高,相交于P,角平分线BE分别交AD,CF于Q,S,那么图中的等腰三角形的个数是( )