试题
题目:
设P、Q为线段BC上两定点,且BP=CQ,A为BC外一动点,如图,当A运动到使∠BAP=∠CAQ时,△ABC的形状是
等腰三角形
等腰三角形
.
答案
等腰三角形
解:反证法.
假设AB≠AC,不妨设AB>AC,则∠B<∠C,故∠QPA<∠AQP,则AP>AQ,
在△ABQ、△ACQ中分别应用正弦定理,得
AP
sinB
=
BP
sinα
=
QC
sinα
=
AQ
sinC
,
则
AP
AQ
=
sinB
sinC
=
AC
AB
,
∴AP·AB=AC·AQ
又∵AB>AC,
∴AP<AQ,这与AQ>AQ矛盾,
∴AB=AC,从而△ABC为等腰三角形.
故答案为:等腰三角形.
考点梳理
考点
分析
点评
专题
正弦定理与余弦定理;等腰三角形的判定.
假设AB≠AC,不妨设AB>AC,则∠B<∠C,故∠QPA<∠AQP,则AP>AQ.然后在△ABQ、△ACQ中分别应用正弦定理求得AP·AB=AC·AQ;又有AB>AC推知AP<AQ,这与AP>AQ矛盾,所以假设不成立,故而AB=AC,所以该三角形是等腰三角形.
本题综合考查了等腰三角形的判定、正弦定理与余弦定理.解答此题时,采用了“反证法”.
证明题.
找相似题
(2013·龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
(2010·荆门)如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
在等边三角形所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有( )