试题
题目:
如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,那么△AEF是等腰三角形吗?
答案
解:△AEF是等腰三角形.
∵BF平分∠ABC,
∴∠ABF=∠DBF,
又∵∠BAC=90°,AD⊥BC,
∴∠AFE=90°-∠ABF,∠DEB=90°-∠DBF,
∴∠AFE=∠DEB,
又∵∠DEB=∠AEF,
∴∠AEF=∠AFE,
∴△AEF是等腰三角形.
解:△AEF是等腰三角形.
∵BF平分∠ABC,
∴∠ABF=∠DBF,
又∵∠BAC=90°,AD⊥BC,
∴∠AFE=90°-∠ABF,∠DEB=90°-∠DBF,
∴∠AFE=∠DEB,
又∵∠DEB=∠AEF,
∴∠AEF=∠AFE,
∴△AEF是等腰三角形.
考点梳理
考点
分析
点评
等腰三角形的判定.
由角平分线的定义得到∠ABF=∠DBF,再利用互为余角的关系和三角形内外角的关系,可以得到∠AEF=∠AFE,由此可判定△AEF是等腰三角形.
本题考查了直角三角形的性质、角平分线的性质及三角形的内外角的关系,充分利用这些性质得到一组角相等,然后利用等腰三角形的判定即可证明结论.
找相似题
(2013·龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
(2010·荆门)如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
在等边三角形所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有( )