试题
题目:
已知:如图,AB=AC,DE∥AC,求证:△DBE是等腰三角形.
答案
证明:∵DE∥AC,
∴∠C=∠DEB.
∵AB=AC,
∴∠B=∠C.
∴∠B=∠DEB.
∴△DBE是等腰三角形.
证明:∵DE∥AC,
∴∠C=∠DEB.
∵AB=AC,
∴∠B=∠C.
∴∠B=∠DEB.
∴△DBE是等腰三角形.
考点梳理
考点
分析
点评
专题
等腰三角形的判定.
要证明△DBE是等腰三角形,主要利用等腰三角形的判定定理和性质定理,而DE∥AC,容易得到角的关系.
本题主要考查等腰三角形的性质及平行线的性质;进行角的等量代换是正确解答本题的关键.
证明题.
找相似题
(2013·龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
(2010·荆门)如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
在等边三角形所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有( )