试题
题目:
在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为
4
4
.
答案
4
解:(1)若AO作为腰时,有两种情况,
当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,
当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;
(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.
以上4个交点没有重合的.故符合条件的点有4个.
故填:4.
考点梳理
考点
分析
点评
等腰三角形的判定;坐标与图形性质.
本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,
当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;
P是OA的中垂线与x轴的交点,有1个,共有4个.
本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
找相似题
(2013·龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
(2010·荆门)如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
在等边三角形所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有( )