试题

题目:
已知菱形ABCD的边长为4cm,且∠ABC=60°,E是BC的中点,P在BD上,则PE+PC的最小值为
2
3
2
3

答案
2
3

解:青果学院作点E关于直线BD的对称点E′,连接CE′交BD于点P,则CE′的长即为PE﹢PC的最小值,
∵四边形ABCD是菱形,
∴BD是∠ABC的平分线,
∴E′在AB上,
由图形对称的性质可知,BE=BE′=
1
2
BC=
1
2
×4=2,
∵BE′=BE=
1
2
BC,
∴△BCE′是直角三角形,
∴CE′=
BC2-BE2
=
42-22
=2
3

∴PE﹢PC的最小值是2
3

故答案为:2
3
考点梳理
轴对称-最短路线问题;菱形的性质.
根据题意画出图形,作点E关于直线BD的对称点E′,连接CE′交BD于点P,则CE′的长即为PE﹢PC的最小值,由菱形的性质可知E′为AB的中点,由直角三角形的判定定理可得出△BCE′是直角三角形,利用勾股定理即可求出CE′的长,故可得出结论,
本题考查的是轴对称-最短路线问题及菱形的性质、直角三角形的判定定理,根据轴对称的性质作出图形是解答此题的关键.
找相似题