试题
题目:
如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长是3,则PM+PB的最小值为
3
2
3
3
2
3
.
答案
3
2
3
解:先连接BD,交AC于点P′,连接BE,
∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,BE=DE,
∵∠BAD=60°,
∴△ABD是等边三角形,点D是点B关于AC的对称点,则BP′=DP′,
∴当P于P′重合时PM+PB的值最小,最小值为MD,
∵M是AB的中点,△ABD是等边三角形,
∴DM⊥AB,
∴DM=
AD
2
-
AM
2
=
3
2
-
(
3
2
)
2
=
3
2
3
,即PM+PB的最小值为
3
2
3
.
故答案为:
3
2
3
.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;菱形的性质.
先连接BD,因为四边形ABCD是菱形且∠BAD=60°,所以△ABD是等边三角形,由于菱形的对角线互相垂直平分,所以点D是点B关于AC的对称点,AD=BD,连接MD,由等边三角形的性质可知DM⊥AB,再根据勾股定理即可求出BD的长.
本题考查的是最短线路问题及菱形的性质,由菱形的性质得出点D是点B关于AC的对称点是解答此题的关键.
存在型.
找相似题
(2013·淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )
(2013·扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )
(2013·随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是( )
(2013·本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有( )
(2012·山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )