答案

证明:(1)由菱形ABCD可知:
AB=AD,∠B=∠D,
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴AE=AF;(4分)
(2)连接AC,
∵菱形ABCD,∠B=60°,
∴△ABC为等边三角形,∠BAD=120°,(2分)
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一的性质),
∴∠BAE=30°,同理∠DAF=30°,(2分)
∴∠EAF=60°,由(1)可知AE=AF,
∴△AEF为等边三角形(2分).

证明:(1)由菱形ABCD可知:
AB=AD,∠B=∠D,
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴AE=AF;(4分)
(2)连接AC,
∵菱形ABCD,∠B=60°,
∴△ABC为等边三角形,∠BAD=120°,(2分)
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一的性质),
∴∠BAE=30°,同理∠DAF=30°,(2分)
∴∠EAF=60°,由(1)可知AE=AF,
∴△AEF为等边三角形(2分).