试题
题目:
菱形ABCD的周长为20,一条对角线AC长为6,则菱形的面积为
24
24
.
答案
24
解:∵AC=6,周长=20,菱形对角线互相垂直平分
∴AO=CO=3,AB=5,
△AOB为直角三角形,
在Rt△AOB中,BO=
AB
2
-
AO
2
=4,
∴BD=8,
∴菱形ABCD的面积为
1
2
×6×8=24,
故答案为 24.
考点梳理
考点
分析
点评
专题
菱形的性质.
根据菱形的周长可以计算菱形的边长,菱形的对角线互相垂直平分,已知AB,AO根据勾股定理即可求得BO的值,根据对角线长即可计算菱形ABCD的面积.
本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
计算题.
找相似题
(2013·淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )
(2013·扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )
(2013·随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是( )
(2013·本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有( )
(2012·山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )